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Transfer function noise modelling of groundwater level fluctuation using threshold
rainfall-based binary-weighted parameter estimation approach
S. Mohanasundarama, Balaji Narasimhanb and G. Suresh Kumarc

aEWRE Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India; bDepartment of Civil Engineering, Indian
Institute of Technology Madras, Chennai, India; cDepartment of Ocean Engineering, Indian Institute of Technology Madras, Chennai, India

ABSTRACT
Considerable uncertainty occurs in the parameter estimates of traditional rainfall–water level transfer
function noise (TFN) models, especially with the models built using monthly time step datasets. This is
due to the equal weights assigned for rainfall occurring during both water level rise and water level
drop events while estimating the TFN model parameters using the least square technique. As an
alternative to this approach, a threshold rainfall-based binary-weighted least square method was
adopted to estimate the TFN model parameters. The efficacy of this binary-weighted approach in
estimating the TFN model parameters was tested on 26 observation wells distributed across the Adyar
River basin in Southern India. Model performance indices such as mean absolute error and coefficient of
determination values showed that the proposed binary-weighted approach of fitting independent
threshold-based TFN models for water level rise and water level drop scenarios considerably improves
the model accuracy over other traditional TFN models.
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1 Introduction

Prediction of groundwater levels with reasonable accuracy is
essential for sustainable groundwater resource management.
This is especially critical in arid and semi-arid regions where
the groundwater resource is highly utilized for various needs,
such as in agriculture, industry and municipal sectors. Time
series models are often used for prediction of groundwater
levels based on historical data. A time series model is an
empirical model for stochastically simulating and forecasting
the behaviour of uncertain hydrological systems (Kim et al.
2005). These are often useful to model any hydrological
system where there is limited availability of data, such as
groundwater level fluctuation modelling and forecasting.

In general, stochastic time series models can be classified
into two kinds; univariate and multivariate models.
Univariate models consist of single variable series that can
be modelled by differencing based on the autoregressive inte-
grated moving average (ARIMA) group of models or tradi-
tional decomposition-based time series models. On the other
hand, multivariate models such as the transfer function noise
(TFN) modelling technique involve two or more input vari-
ables and their dynamic relationships with the output. For
example, rainfall series can be related to water level series and
their dynamic relationship can be modelled by the TFN
approach. TFN models in which the input time series are
linearly transformed to output series have been used exten-
sively in modelling groundwater levels by various authors
(Knotters and Van Walsum 1997, Van Geera and Zuur

1997, Bierkens et al. 1999, Knotters and Bierkens 2000, Yi
and Lee 2004).

Groundwater level fluctuations are highly dynamic in nat-
ure. The relationship between rainfall and groundwater level
fluctuations is highly nonlinear due to complex physical pro-
cesses, such as infiltration, percolation and evapotranspira-
tion, governing the movement of water through the vadose
zone before reaching the water table. This is further compli-
cated due to groundwater abstraction by pumping. Although
there are numerous mechanistic models available to model
groundwater level dynamics, they all require a huge amount
of data and thorough understanding of the physical processes.
However, stochastic-based TFN models translate the non-
linear equation into a set of linearly related equations between
input and output variables and do not require a thorough
understanding/description of the physical processes or para-
meters of the system involved. Therefore, TFN models are
preferred over mechanistic models when there is paucity in
the availability of data, due to the simplicity in estimating
model parameters and modelling the output response (Hipel
and McLeod 1994).

As rainfall is a major factor affecting the groundwater level
response, TFN models are often constructed based on rainfall
(input variable) as the variable influencing water level data
(output variable) as a response variable. Significant cross-
correlation between rainfall and water level data has revealed
that there is a strong transfer function relationship between
rainfall and water level (Yi and Lee 2004). However, TFN
models have also been constructed based on rainfall surplus
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(e.g. rainfall minus potential evapotranspiration) and water
level time series data (Tankersley et al. 1993, Gehrels et al.
1994, Knotters and Van Walsum 1997, Van Geera and Zuur
1997). Since the rainfall and water level relationship is non-
linear due to vadose zone physical processes, TFN models can
also be constructed based on infiltration rate, which is simu-
lated through the vadose zone and respective water level time
series data to improve the accuracy of the model results.
Infiltration rate time series data could be obtained by the
vadose zone water flow simulation codes such as SWATRE
(Knotters and Van Walsum 1997) and HYDRUS (Yi and Lee
2004). However, physical parameters such as soil water reten-
tion parameters needed to run SWATRE and HYDRUS mod-
els are often not available for many parts of the globe.
Therefore, TFN models are primarily constructed with rain-
fall or rainfall excess as the main input variable to model
groundwater level fluctuations.

TFN models can be constructed in four major steps,
similarly to any other time series models: (a) model identi-
fication, (b) parameter estimation, (c) diagnostic checking
and (d) model application (Box and Jenkins 1976). Model
identification is generally done by specifying the model
orders of a TFN model, which has two major components:
a dynamic component and a noise component. The
dynamic component is usually modelled using rainfall as a
variable, which explains part of the water level fluctuation,
and the remaining unexplained part of the water level
variable is modelled as the noise component. Instead of
independently modelling the dynamic and the noise parts
of the TFN models, some authors have modelled both
components by relating them in terms of their model
orders. With such conditions, TFN models can be repre-
sented as autoregressive exogenous variable (ARX) models
and autoregressive exogenous moving average variable
(ARMAX) models (Knotters and Bierkens 2000). ARX
models are constructed on only the dynamic part of TFN
models, where the noise component is assumed to be nor-
mally distributed with independent residuals. ARMAX
models are developed on both dynamic components and
the correlated noise components. Parameter estimation for
ARX and ARMAX models is generally done by least square
minimization and prediction error techniques, respectively.
Diagnostic checking is done for the calibrated time series
models in which the modelled errors are verified for nor-
mality and non-dependency (no serial correlation). After
the diagnostic checking of the residuals, selected models
can be used for prediction and forecasting applications.

A major advantage of TFN models is that they can be
combined with physical models and compared with physical
parameters. The physical basis of the rainfall–water level
relationship can be compared with simple ARX model para-
meters (Knotters and Bierkens 2000). Physically-based rain-
fall–groundwater level models are then used to predict the
intervention effect of rainfall quantity over the dynamics of
groundwater level. A simple model order of the TFN model
structure, such as ARX and ARMAX models, is most often
considered for simplicity in estimating the time series model
parameters. This also facilitates comparison of the TFN
model parameters with the physical model parameters such

as drainage resistance, infiltration rate and regional ground-
water flux.

A special set of TFN (ARX) model parameters can be
developed using both water level rise and water level drop
events together (implicitly) along with the corresponding
rainfall data. This does not introduce appreciable error on a
daily time scale; however, when the time series model is built
on a monthly time scale, large errors may be introduced due
to uncertainty in the estimation of TFN model parameters as
opposed to accounting for rise and drop events explicitly. In
most parts of the world, either monthly or bi-monthly
groundwater level is routinely observed, as opposed to daily
measurement. In this study, a novel approach is adopted to
estimate threshold-based ARX model parameters by splitting
the rainfall–water level data, based on a rainfall threshold,
into water level rise and water level drop series identified
from the calibration dataset.

2 Literature review

Time series models have been used extensively in ground-
water hydrological applications (Salas et al. 1982, Adamowski
and Hamory 1983, Houston 1983, Furbish 1991, Lee and Lee
2000).Viswanathan (1983) modelled the rainfall and water
table relationship for a coastal unconfined aquifer using a
first-order autoregressive time series model (FOARX) at
Tomago sand beds near Newcastle, New South Wales,
Australia. The model structure was formed with the water
level at day t as dependent on rainfall from day t to t-8. The
FOARX model parameters were estimated using a recursive
algorithm by minimizing the cost function between the pre-
dicted and observed water level values. The rainfall and water
level data were used in the parameter estimation stage with-
out considering water level rise or drop events. The FOARX
model parameters, λ, α and β, were associated with the water
level variable, rainfall variable, and external disturbances,
respectively. These statistical parameters were correlated to
interpret the physical parameters of drainage factor, infiltra-
tion factor and other factors influencing rainfall–water table
depth in a hydrological process, respectively.

In a similar study, Kim et al. (2005) designed time series
models to evaluate groundwater discharge characteristics for
subway systems in Seoul, South Korea. Time series of rainfall
and groundwater discharge observed at three subway stations,
Gireum, Garibong and Sadang, were used to develop TFN
models using monthly rainfall and groundwater discharge
data. The autocorrelation function (ACF) and cross-correla-
tion function (CCF) plots were used to identify a proper TFN
model structure for every station of the subway system in
Korea. Three different combinations of TFN models were
identified based on ACF and CCF results for each subway
station. Akaike information criterion (AIC) and Bayesian
information criterion (BIC) values were computed for all
identified sets of TFN models at every subway station. The
best TFN model was selected based on the minimum values
of AIC and BIC model indices. The selected TFN models
were used to predict the stream discharge against rainfall
data for corresponding subway stations. Model validation
results showed that good agreement was achieved between
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the model predicted discharge rates and observed discharge
rates. Although their study was based on monthly data, they
did not assign differential weights for monthly rainfall during
water level rise and water level drop periods, which might
further reduce the uncertainty in the model predictions.

Changnon et al. (1988) developed a statistical relationship
between monthly rainfall and groundwater levels for 20 wells
scattered across Illinois, USA. The monthly differenced water
levels and rainfall series were modelled using TFN models.
An individual autoregressive integrated moving average
(ARIMA) model was fitted for rainfall and water level data
separately until the stationarity condition was satisfied. Pre-
whitened rainfall and water levels were correlated using cross-
correlation analysis and a lag of 1 month was observed
between rainfall and groundwater levels. Three different
forms of transfer function models were compared using the
AIC index and the best one was recommended for further
modelling of rainfall–water level relationships. Estimated
transfer function model parameters were correlated with the
geomorphological conditions of the site to understand the
underlying physical relationships based on the response of
groundwater to rainfall, and thus the information was used
for drought assessment of the region. The parameters of the
transfer function model at various sites were combined, from
which a single equation with respect to soil parent material
was developed. The developed transfer function model for
precipitation and shallow groundwater levels was used to
predict water levels during a drought at any location in
Illinois, excluding 20 sites for which water level information
was available. Model predictions at each site were compared
with actual monthly water level data over 20 years. The
predicted values were within one standard deviation of mea-
sured water levels except for two values. Average differences
of 27 cm to 47 cm during the cold season months and 31 cm
to 48 cm during the warm season showed that the derived
equation could be applied for areal estimates of shallow
groundwater levels during the drought events. In this study
also, monthly rainfall during water level rise and water level
drop events was treated similarly when fitting the TFN model
parameters.

Knotters and Van Walsum (1997) developed a set of
physically-based time series models (SWATRE-TFN) to esti-
mate daily fluctuations of water table depths with rainfall
excess as the daily input variable. The SWATRE model
accounts for the nonlinear physical relationship between the
groundwater head and rainfall variables by simulating unsa-
turated groundwater flow. The unexplained part of the
SWATRE model output was modelled by a noise component
with ARMA model parameters based on Box and Jenkins
time series methodology (Box and Jenkins 1976). Validated
results of SWATRE combined with TFN noise model esti-
mates performed better than using standalone TFN models.

Yi and Lee (2004) developed a TFN model with ground-
water head as output series and rainfall and infiltration rate
derived from the HYDRUS package as input series to the
model. This TFN model was built on regularly observed
(daily) input–output data series, using a Kalman filtering
technique to integrate with irregularly observed water level
series to estimate groundwater heads at the unobserved time.

The CCF between groundwater heads and rainfall may be
misconstrued as an exact lag relationship between input and
output data series due to the inherently high autocorrelation
tendency of groundwater levels. Pre-whitening-based cross-
correlation analysis was suggested in this study to identify an
exact cross-correlation relationship between rainfall and
groundwater level. The model orders (r, s, p, q, b) during
the calibration period were determined as (1, 1, 1, 1, 0) for
one well. For another well located in the same formation, they
were identified as (1, 2, 1, 1, 0). The results of the selected
TFN models were validated with 1000 d water level data.
Mean error, mean absolute error (MAE) and root mean
square error (RMSE) model indices showed that the TFN
model predictions were satisfactory.

Most of the time, TFN models are constructed with a
linear relationship between rainfall or rainfall excess and
water level. But, from physical evidence, the relationship
between rainfall and water level is known to be highly non-
linear. As the saturation of the root zone process is highly
time dependent in the unsaturated zone, the corresponding
evapotranspiration, percolation and recharge processes varies
with time. Therefore, it might lead to large uncertainty if this
process is avoided while constructing TFN models for
groundwater level fluctuation predictions. To address this
problem, Berendrecht et al. (2006) modelled the unsaturated
zone processes using Richards’ equation and Darcy’s law to
estimate the time series of evapotranspiration, percolation out
of the root zone and recharge. A nonlinear state-space model
was developed with an extended Kalman filter algorithm to
calibrate its parameters with the observed water level series.
For comparison purpose, a linear TFN model was also cali-
brated with the observed water level series. Results showed
that the nonlinear model performed better than the linear
model and improved the prediction accuracy of the ground-
water levels.

Another type of nonlinearity in rainfall–water level fluc-
tuation modelling arises due to drainage flux occurring at
different drainage levels. Knotters and De Gooijer (1999)
developed nonlinear state space models with shifting water
level regimes, commonly known as threshold autoregressive
self-exiting open-loop (TARSO), to model groundwater levels
with different levels of drainage separated by thresholds.
TARSO model results were better than the linear TFN and
dynamic regression (DR) model results as the model incor-
porated different regimes resulting from different soil layers
and drainage levels.

In another similar study, the nonlinearity due to drainage
in groundwater systems was addressed by Berendrecht et al.
(2004). They developed a state-space threshold model to
account for the nonlinearity, which was constructed with
measured groundwater table depth along with precipitation
and evapotranspiration time series. A maximum likelihood
criterion was adopted to estimate the parameters, which
included the threshold value for the drainage level.
Application of this model was tested on two time series of
water level datasets and the results showed the superior per-
formance of the state-space model in predicting groundwater
levels. This model was also used in characterizing the ground-
water systems, as the physical basis in terms of drainage levels
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was incorporated in the model rather than just the water level
prediction itself.

The groundwater system is influenced by both natural
climatic conditions and human interventions. Linear TFN
models often ignore the nonlinearity arising from human
interventions, such as groundwater withdrawals, when mod-
elling groundwater level fluctuations. Gehrels et al. (1994)
developed a linear stochastic TFN model for groundwater
table depth prediction from rainfall excess time series data
and then separated the artificial component from the natural
groundwater regime. Trends in groundwater time series data
arise due to natural and artificial causes. TFN models are a
useful tool to decompose such processes and model them
independently, as well as modelling them as a whole. Van
Geer and Defize (1987) decomposed groundwater in terms of
natural and artificial components using TFN models. The
effect of the artificial component of groundwater pumping
was assessed by the developed TFN models.

Simple and special cases of TFN models, such as ARX
models with few parameters, have been extensively developed
based on the physical processes of the vadose zone rainfall–
water level relationship to predict water level fluctuations
(Knotters and Bierkens 2000, Bierkens et al. 2001).
Although very often used to capture the linear relationship
between rainfall and water level response, the estimated para-
meters of the ARX models are still uncertain due to the mixed
effects of water level rise and water level drop events inherent
in the actual water level data. This is especially true in the case
of modelling with monthly time series, where uncertainty in
estimation of ARX model parameters is high, as opposed to
accounting for rainfall during water level rise and water level
drop events explicitly. Therefore, a threshold rainfall-based
binary-weighted least square method was adopted to para-
meterize the TFN models in this study to account for the
nonlinearity in the rainfall–water level fluctuation process.

The objective of this study is to model groundwater level
by comparing ARX model performance resulting from two
different ways of parameterizing the ARX models using the
least square technique as follows:

(1) The traditional method of estimating linear ARX
model parameters using the continuous rainfall–
water level calibration dataset.

(2) Considering threshold rainfall and explicitly identify-
ing water level rise–rainfall and water level drop–rain-
fall regimes in estimating ARX model parameters
using a binary-weighted approach.

In order to assess the efficacy of the ARX models, a generic
univariate time series model, deseasonalized ARMA (Ds-
ARMA), for water level data was developed as the base
model with which the ARX models are compared.

3 Methodology

3.1 TFN-based ARX models

TFN models consist of two components, dynamic and noise.
The dynamic component of a TFN model involves one or

more input variables that explain part of the variability
observed in the output signal. The unexplained part of a
TFN model is independently modelled by a noise process.
TFN models can be constructed based on standard time series
methods with the proper steps necessary to model the sto-
chastic time series process. Single input–single output transfer
function models for rainfall and groundwater level data were
given by Knotters and Bierkens (2000) as:

ht ¼ ht
� þ Nt (1)

ht
� ¼

Xp
i¼1

aih
�
t�i þ

Xq
j¼0

bjpt�j�k (2)

Nt � μ ¼
Xr

i¼1

ciðNt�i � μÞ þ
Xs

j¼1

djεt�j þ εt (3)

where ht is the water table depth at time t [L]; ht* is the water
table depth attributed to the rainfall value [L]; Nt is the
unexplained part or noise term [L]; pt is the average rainfall
attributed to the time step t − 1 to t [L]; k is the delay factor
between input and output responses; µ is the expected value
of the noise term [L]; ai is the autoregressive parameter of the
transfer function model of order i = 1, . . ., p; bj is the moving
average parameter of the transfer model of order j = 1, . . ., q;
ci is the autoregressive parameter of the noise model of order
i = 1, . . ., r; dj is the moving average parameter of the noise
model of order j = 1, . . ., s; ɛt is the white noise with mean
zero and variance σ2.

The delay factor (k), given in Equation (2), is identified by
the cross-correlation of the pre-whitened white noise series of
rainfall and water level data. The TFN model orders such as p,
q, r, s were kept as simple model orders for ease of compar-
ison among different models with different parameterization
methods. Therefore, in this study we selected a TFN model
with model orders, p = 1; q = 0; r = 1; s = 0; k = 0. By applying
the selected model orders in Equations (1)–(3), the resulting
TFN model is as follows:

ht ¼ ht
� þ Nt (4)

ht
� ¼ a1ðh�t�1Þ þ b0ðptÞ (5)

Nt � μ ¼ c1ðNt�1 � μÞ þ εt (6)

If the model order of the autoregressive parameter of the
noise model is taken to be same as the autoregressive para-
meter of the transfer model, i.e. c1 = a1, then the TFN model
of Equations (4)–(6) can be reduced to a special case of the
TFN model, which is also known as the ARX or ARX(1,0)
model, as follows:

ht � μ ¼ a1ðht�1 � μÞ þ b0ðptÞ þ εt (7)

3.1.1 ARX model parameter estimation using a least
square technique
The traditional method of estimating parameters of an ARX
model using a simple least square technique accounts totally
for the input variables, such as past water level data and
present rainfall data, during the calibration period. Consider
the transformed form of Equation (7):
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Ht ¼ a1ðHt�1Þ þ b0ðPtÞ þ εt (8)

where Ht = ht − µh is the transformed groundwater level [L];
Pt = pt is the rainfall series [L] (Equation (7)); µh is the
minimum water level [L].

Traditional least square ARX (TLS-ARX) model para-
meters were estimated by the following steps:

Step 1. For the given input series of groundwater levels [H
(t − 1),H(t − 2), . . .] and rainfall [P(t), P(t − 1), . . .] the infor-
mation matrix and parameter vector can be formulated as:

ĤðtÞ ¼ a1Hðt � 1Þ þ b0PðtÞ
¼ Hðt � 1ÞjW � PðtÞ�½ � a1

b0

� �

¼ ΦðtÞTθ; W ¼ 1 (9)

Step 2. Prediction error ɛ at time t can be calculated as:

εðt; θÞ ¼ HðtÞ � ĤðtÞ ¼ HðtÞ �ΦðtÞTθ (10)

Step 3. Sum squared error can be minimized to estimate
the parameter θ given by:

MinðθÞ ¼
XN
i¼1

εðt; θÞ � εðt; θÞT (11)

Step 4. The matrix form of Equation (11) for time
t = 1, . . .,N that minimizes the error (E) and estimates
the respective parameters is:

MinðθÞ ¼ EðN; θÞ � EðN; θÞT (12)

θ̂TLS ¼ ½ΦðNÞTΦðNÞ��1ΦðNÞTHðNÞ (13)

Step 5. The model prediction equation during the valida-
tion stage for the TLS-ARX model is:

Ĥt ¼ âTLSðHt�1Þ þ b̂TLSPt (14)

3.1.2 ARX model parameter estimation using a binary-
weighted least square technique by considering water level
rise and drop explicitly
Unlike traditional least square parameter estimation methods,
in binary-weighted least square schemes, two independent
ARX models with unique parameterization are developed for
(1) data pairs of rainfall and water level during the water level
rise events with rainfall above a threshold and (2) data pairs of
rainfall and water level during the water level drop events.

The steps involved in this binary-weighted water level rise and
drop ARX (BW-RD-ARX) model parameter estimation were as
follows:

Step 1. First a threshold rainfall value (TP) above which water
level rise was encountered was identified. This was done
by sorting the data based on the water level rise and
identifying the corresponding minimum rainfall value.

Step 2. In the model calibration stage, water level rise or
drop events were identified based on observed water
level data at current and previous time steps (H(t) and
H(t − 1)). A subset of the rainfall–water level dataset was
identified in which rainfall values corresponding only to
water level rise periods and rainfall above the threshold
value (Tp) were given full weighting, while rainfall dur-
ing water level drop periods was suppressed by impos-
ing a weight of zero. Similarly, another model was built
with the rest of the data corresponding to water level
drop events, by suppressing rainfall corresponding to
water level rise by imposing a weight of zero. This is
further explained in Equations (15) and (16) as follows:

ĤðtÞ ¼ Hðt � 1ÞjW � PðtÞ½ � � aBW�R

bBW�R

� �

¼ ΦðtÞTθBW�R
W ¼ 1 if HðtÞ � Hðt � 1Þ > 0; and PðtÞ > Tp

W ¼ 0 otherwise

�

(15)

ĤðtÞ ¼ Hðt � 1ÞjW � PðtÞ½ � � aBW�D

bBW�D

� �

¼ ΦðtÞTθBW�D;
W ¼ 1 if HðtÞ �Hðt � 1Þ < 0
W ¼ 0 otherwise

�

(16)

The parameters of Equations (15) and (16) are estimated by
the usual method of minimizing the sum square error using
Equations (10)–(13).

Step 3. As the current time step water level is not known
during the model validation or forecasting stage, water
level rise and water level drop events were identified
based on the previous two time steps in observed water
level data (H(t − 1) and H(t − 2)). It was assumed that
water level rise or drop for the current time step is most
likely dependent on the previous two consecutive water
level values. Therefore, the model prediction equation
during the validation stage for the BW-RD-ARX model
is given in Equations (17) and (18) as follows:

Ĥt ¼ âBW�RðHt�1Þ þ b̂BW�RðPtÞ; Ht�1

�Ht�2 > 0; andPt > Tp (17)

Ĥt ¼ âBW�DðHt�1Þ þ b̂BW�DðPtÞ; Ht�1 �Ht�2 < 0 (18)

It should be noted that the predictions for BW-RD-ARX model
parameters âBW�R, b̂BW�R, âBW�D and b̂BW�D from Equations
(17) and (18) are totally different from the TLS-ARX model

parameters âTLS and b̂TLS from Equation (14), as they are
estimated only on the basis of a subset of the calibration dataset,
whereas TLS-ARX model parameters are estimated from the
complete calibration dataset without any differential weighting.
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3.1.3 Deseasonalized ARMA model
A univariate time series model, Ds-ARMA, for water level data
was developed as a base model with which the TFN-based ARX
models described in Sections 3.1.1 and 3.1.2 were compared. Ds-
ARMAmodels are basically developed on transformed time series
data where long-term monthly averages are estimated from the
original time series data and the seasonality is removed from the
original data. As Ds-ARMA models are a well-known and effec-
tive univariate modelling technique for streamflows and ground-
water level with significant seasonality in nature, such a model
was considered in this study to compare it with the proposed
ARX models (Govindasamy 1991, Peng and Liu 2000, Almedeij
and Al-Ruwaih 2006, Mondal and Wasimi 2006, Modarres 2007,
Fernandez et al. 2008, Paul 2008, Ghanbarpour et al. 2010,
Martins et al. 2011, Adhikary et al. 2012, Lu et al. 2014). A
deseasonalized series was modelled with simple AR and MA
components. The Ds-ARMA approach according to Hipel and
McLeod (1994) is given by:

ϕðBÞðht � μ̂mtÞ ¼ θðBÞet (19)

with coefficients:

ϕðBÞ ¼ 1� ϕ1B� . . .ϕpB
p

θðBÞ ¼ 1� θ1B� . . . θqB
q

where ht is the observed water level data [L]; μ̂mt is the mean
monthly value for month m at time t [L]; ϕ1 . . . ϕp are the auto-
regressive coefficients of order p; θ1 . . . θq are the moving average
coefficients of order q; B is the backshift operator; et is the white
noise [L].

For simple case comparison, the AR and MA terms of the
Ds-ARMA model were modelled with one coefficient in each
(i.e. ϕ1 and θ1, respectively). Parameters of the Ds-ARMA
model were estimated by a maximum likelihood technique.
The prediction equation of the Ds-ARMA model is as follows:

ĥt ¼ μ̂mt þ ϕ1ðht�1 � μ̂mtÞ � θ1ðet�1Þ (20)

3.2 Model assessment indices

The model efficiency was assessed using model indices such
as MAE, RMSE and R2. The formulations for MAE (EMA),
RMSE (ERMS) and R2 are:

EMA ¼ 1
N

XN
t¼1

jHt � Ĥtj (21)

ERMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
t¼1

ðHt � ĤtÞ2
vuut (22)

R2 ¼ 1�
PN
t¼1

ðHt � ĤtÞ
PN
t¼1

ðHt � �HÞ

0
BBB@

1
CCCA

2

(23)

where N is the sample size; Ht is the observed value at time t
[L]; Ĥt is the predicted value at time t [L]; �H is the observed
mean value [L].

4 Case study

4.1 Study area

The efficacy of the proposed binary-weighted ARX model
(BW-RD-ARX) over traditional ARX models (TLS-ARX)
and Ds-ARMA models was tested on groundwater level
data from the Adyar basin, India. The Adyar basin is
located in the northeast coastal part of the state of
Tamil Nadu, India (Fig. 1). This basin receives rainfall
from both southwest and northeast monsoons. Northeast
rainfall is predominant and occurs during the months of
October, November and December. The southwest mon-
soon rainfall is erratic in nature and summer rainfall is
negligible. Long-term annual average rainfall is about
1315 mm (WRO 2007). Climatic conditions in the sub-
basin are classified as dry humid and semi-arid tropics.
Elevation ranges from 183 m above mean sea level (a.m.s.
l.) in the west to sea level in the eastern part of the basin.
Soils in the basin have been classified into clayey, black,
red sandy and alluvial. Black soils occur in the depres-
sions adjacent to hilly areas in the west. Alluvial soils
occur along the river courses and in the eastern part of
the coastal areas. The major hydrogeology in the basin is
classified as unconsolidated, semi-consolidated and weath-
ered fractured rock formations. Groundwater occurs
under phreatic and semi-confined conditions in intergra-
nular pore spaces in sands and sandstones, and in bedding
planes and thin fractures in shales. The groundwater table
depth fluctuation in the observation wells varies from a
minimum near the surface to a maximum at 12 m below
ground level.

4.2 Data used

Daily rainfall data for five raingauge stations in and around
the Adyar basin were acquired from the State Ground and
Surface Water Resources Data Centre (SG&SWRDC),
Taramani, for a period of 15 years (1988–2002). Monthly
water level data were also acquired for 26 observation wells
for the same time period. Data were available for a period
of 180 months (1988–2002), out of which 120 months
(1988–1997) were used for calibration and remainder was
used for validation. Observation well depth to water table
data were converted to hydraulic head data with respect to
the datum plane of m.s.l. Based on the areal extent of the
Thiessen polygon, four rainfall zones were identified and
the observation wells were categorized into one of these
four zones. The proposed approach was applied to all 26
wells from the study area. However, for brevity, the time
series plot for only one well is presented here for illustra-
tion. The selected well (Well 13172) is located in the
Kovalam rainfall zone at 12.87°N latitude and 80.24°E
longitude (Fig. 1).The time series of selected well data
along with the rainfall values are shown in Figure 2. The
model performance in terms of MAE and R2 for all 26
wells is presented below in the form of maps for a com-
prehensive assessment of the proposed approach of build-
ing TFN models.
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Figure 1. Drainage map of the study area along with observation well and raingauge locations.

Figure 2. Rainfall–water level data of Well 13172 used in ARX models.
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5 Results and discussion

5.1 Autocorrelation and cross-correlation analysis of
rainfall–water level data

Autocorrelation and cross-correlation analyses were made on
the rainfall, water level and rainfall–water level data for each
of the 26 wells to identify the time series model structure. As
expected, the ACF plot (Fig. 3) shows that the monthly rain-
fall and water level data have significant autocorrelation due
to seasonality.

Cross-correlation analysis on actual rainfall and water level
data shows a sinusoidal pattern, indicative of seasonality
(Fig. 4(a)), from which the exact cross-correlation lag rela-
tionship between rainfall and water level data cannot properly
be revealed. Hence, the rainfall and water level data were both
pre-whitened and a cross-correlation analysis was carried out
on the pre-whitened residuals.

Pre-whitening is the process of identifying an appropriate
ARMA model to convert the residual to a white noise.
Individual rainfall and water level time series data were fitted
with appropriate ARMA models to identify the cross-correla-
tion between rainfall and water level data. As both rainfall
and water level data were affected by the seasonality, they
were deseasonalized before identifying suitable ARMA mod-
els (deseasonalized ARMA) for both the variables according
to Box and Jenkins (1976). ARMA filters for the deseasona-
lized rainfall and water level data for Well 13172 are given in

Equations (24) and (25). Deseasonalized ARMA filter for
rainfall data:

ð1� 0:05B� 0:52B2Þðpt � μpÞ
¼ ð1� 0:36Bþ 0:64B2 þ 0:35B3Þet (24)

Deseasonalized ARMA filter for water level data:

ð1� 0:64BÞðht � μhÞ ¼ ð1� 0:37BÞet (25)

Uncorrelated residuals obtained from the deseasonalized
ARMA models for rainfall and water level were compared
by cross-correlation analysis. A CCF plot of pre-whitened
rainfall and water level data was constructed for up to
20 months lag. The CCF plot clearly shows that the cross-
correlation is maximum at lag zero for the given rainfall and
water level data (Fig. 4(b)). Furthermore, the lag zero cross-
correlation is the only significant correlation between rainfall
and water level data. Hence, the lag time parameter was fixed
as zero (k = 0) in the ARX model order specification.

5.2 Estimation of model parameters

Taking model parsimony into account, other model orders
for the autoregressive transfer function model and moving
average transfer function model were fixed with one para-
meter in each term; therefore the complete model orders for
the ARX model were p = 1; q = 0; r = 1; s = 0; k = 0 and the

Figure 3. Autocorrelation plot of actual (a) rainfall and (b) water level data of Well 13172.

Figure 4. Cross-correlation plot of (a) actual rainfall–water level data and (b) pre-whitened rainfall–water level data of Well 13172.
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corresponding model is given in Equation (7). The para-
meters of Equation (7) were estimated by both the traditional
least square error method and the binary-weighted least
square error method. The TLS-ARX model estimates the
model parameters based on the entire water level and rainfall
data without accounting for water level rise and water level
drop events separately, whereas the BW-RD-ARX method
estimates model parameters by explicitly identifying water
level rise and water level drop events from the calibration
dataset.

In addition to these ARX models, a univariate time series
model, similar to the one given in Equation (20) for water
level data was also separately developed using a deseasona-
lized approach for comparison with other ARX models. The
Ds-ARMA and ARX models were fitted using 10 years of
monthly data for 1988–1997. The Ds-ARMA model and the
ARX model parameters with their corresponding statistics are
given in Table 1.

Note that all the estimated model parameters were signifi-
cantly different from zero, as their p-values were less than
0.01 (99% confidence level) (Table 1). The residuals of the
univariate (Ds-ARMA) and bivariate models (ARX models)
were analysed for residual independence and normality con-
ditions. Residual independence was checked by plotting ACF
plots of the simulated model residuals and it was observed
that the serial correlations for lag of up to 20 months were
insignificant (within 99% confidence interval), which indi-
cates that there was no evidence for serial correlation.
Therefore, the developed models showed a high degree of
confidence in terms of their predictions and they could be
compared in terms of their performance.

The same procedure of model fitting and residual tests was
carried out at other locations where water level and rainfall
data were available and similar results were obtained (no
serial correlation). Therefore, the developed models were
applied independently at all the locations for predicting
groundwater levels.

5.3 Model validation

One-month rolling predictions of water table depth were
made using the developed ARX and Ds-ARMA models and
validated using observed data for the period of 5 years from
1998 to 2002. Based on the model structure identified using
ACF and CCF analysis, in the case of Ds-ARMA models,
previous month deseasonalized water level data (autoregres-
sive term) and previous month correlated error data (mov-
ing average term) were used to predict the current month

water levels. In the case of TLS-ARX models, current
month rainfall data along with the past month observed
water level data were used for predicting the current month
water level value. In the case of the BW-RD-ARX model,
when the data for water level at the past two time steps and
corresponding hydraulic head change are positive and the
corresponding rainfall value is higher than the threshold
rainfall value, the BW-RD-ARX model predicts the water
level rise mode using the corresponding estimated ARX
model parameters. When either one of the above conditions
is not satisfied, then the BW-RD-ARX model predicts the
water level drop mode using the corresponding estimated
ARX model parameters.

Prediction results show that the BW-RD-ARX model per-
forms significantly better than the other traditional univariate
(Ds-ARMA) and bivariate (TLS-ARX) models (Fig. 5(c)). The
accuracy of the BW-RD-ARX model performance in terms of
MAE, RMSE and R2 values for the selected well (13172) was
significantly better than the other two models (Ds-ARMA
and TLS-ARX), as shown in Figure 5. Overall linear depen-
dency of the developed models was evaluated in terms of R2

values. The high R2 value for BW-RD-ARX indicates that the
model reliability in predicting the water levels with rainfall
values is high when compared with the other two models.
Model performance in terms of deviation was determined by
MAE and RMSE model indices. MAE and RMSE values for
the BW-RD-ARX model were significantly lower those for the
Ds-ARMA and TLS-ARX models, which indicates that this
model predicts the water levels with less deviation from the
observed values.

5.4 Effect of range of rainfall magnitude on water table
depth predictions

The accuracy of the developed ARX models (TLS-ARX and
BW-RD-ARX) was further analysed for different magnitudes
of monthly rainfall values. Validation datasets containing
monthly rainfall values, observed water table depths and pre-
dicted water table depths for the developed models were
binned based on the monthly rainfall thresholds in ascending
order, from which three different ranges of monthly rainfall
values (0–10 cm, 10–20 cm and >20 cm) and corresponding
observed and predicted water levels were taken indepen-
dently. Observed and predicted water levels from the TLS-
ARX and BW-RD-ARX models for these three threshold
limits of monthly rainfall were plotted on a 1:1 line
(Figs 6–8).

It was observed that the predictions by the BW-RD-ARX
for all ranges of rainfall values were better than those by the
TLS-ARX model for corresponding rainfall ranges (Figs 6–8).
Interestingly, the BW-RD-ARX model predicts with the high-
est accuracy for the rainfall range of 0–10 cm as compared to
other rainfall ranges of 10–20 cm and >20 cm (Fig. 6(b)) over
the TLS-ARX model. This is probably because at higher
ranges of rainfall the runoff process may become dominant
due to saturation of the vadose zone and any further increase
in rainfall would not produce an equivalent increase in the
recharge process.

Table 1. Estimated parameters of Ds-ARMA and ARX models for Well 13172.

Model Parameters Value Standard error t-statistic p-value

Ds-ARMA ϕ1 0.61 0.06 9.52 0.00
θ1 0.63 0.08 8.36 0.00

TLS-ARX aTLS 0.80 0.03 25.81 0.00
bTLS 0.03 0.00 12.42 0.00

BW-RD-ARX aBW-R 0.94 0.02 40.69 0.00
bBW-R 0.01 0.00 4.19 0.00
aBW-D 0.94 0.03 32.91 0.00
bBW-D 0.02 0.01 2.73 0.00
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Similar observations on model performance were made for
all 26 wells. Overall, the BW-RD-ARX model outperformed
other models at all ranges of rainfall magnitude. Therefore,
application of the BW-RD-ARX model in predicting ground-
water levels is highly valid over the wide range of rainfall
distribution regions that occur in semi-arid to humid climatic
conditions.

The prediction performance for the BW-RD-ARX model
was better than that of the TLS-ARX model because uncer-
tainties in the AR and transfer model coefficients of the BW-
RD-ARX model were greatly reduced, as they were logically
estimated with two independent models by separating water
level–rainfall data pairs into water level rise and drop events.
Considerable uncertainty remains in the estimated AR and

transfer model coefficients of the TLS-ARX model because
they were estimated with a water level–rainfall dataset in
which water level data implicitly combined water level rise
and water level drop events.

5.5 Spatial interpolation of model indices over the study
region

The developed univariate and transfer function models were
evaluated for all 26 observation wells in the study region.
Model performance measures such as MAE and R2 were
calculated during the validation period (1998–2002) from
the respective time series models. The ordinary kriging
approach was adopted for spatial interpolation of MAE and

Figure 5. Water levels predicted by (a) Ds-ARMA, (b) TLS-ARX and (c) BW-RD-ARX models.

Figure 6. Observed and predicted water levels for rainfall less than 10 cm by (a) TLS-ARX and (b) BW-RD-ARX models.
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R2 over the study region. A spherical semi-variogram was
fitted before interpolating the values using the kriging
approach. Spatial interpolations of the MAE values from the
developed models are given in Figure 9.

MAE values varied highly from 0.02 m to 1.3 m over the
study region. The places where the higher gradient MAE values
were observed are in regions with high altitude. Variations in
the observed water level data at these places were high, due to
mountains where the presence of rock fractures could have
caused the water level to vary significantly at any time during
the observation period. All the developed models comparably
predict water levels with high MAE values in the central part of
the study region (Fig. 9). However, the BW-RD-ARX model
had the lowest MAE value (0–0.5 m).

In the eastern coastal part of the study region, where the
density of observation wells is higher, all the models consis-
tently predicted water levels with lower MAE (0–0.6 m). In
the western part of the study region, where the observation
wells are fewer in number, MAE values were observed in the
range of 0.2–0.9 m. A major part of the western region had
low MAE values (0.2–0.5 m) predicted by BW-RD-ARX when
compared to other models (Fig. 9).

Spatial interpolation of R2 values was done by the same
kriging approach and keeping the same semi-variogram type
(spherical) for all the models (Fig. 10). As far as R2 variation
over the study region is concerned, BW-RD-ARX performed
best across the entire watershed, with R2 values above 0.91.
The Ds-ARMA model performed worst, with R2 values less
than 0.7 across most of the domain.

6 Summary and conclusions

Understanding the behaviour of the groundwater system for
different climatic stresses such as rainfall is important for
proper planning and management of groundwater resources.
Rainfall–groundwater level relationships can be effectively
modelled by TFN-based ARX models. But the traditional
ways of estimating linear ARX model parameters have con-
siderable uncertainties as the rainfall–water level relationship
becomes highly nonlinear. Therefore, in this study, a binary-
weighted method of estimating the ARX model parameters
was adopted under two scenarios. Two independent ARX
models were developed based on two different datasets,

Figure 7. Observed and predicted water levels for the rainfall range 10–20 cm by (a) TLS-ARX and (b) BW-RD-ARX models.

Figure 8. Observed and predicted water levels for rainfall greater than 20 cm by (a) TLS-ARX and (b) BW-RD-ARX models.
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which were identified based on water level rise and drop
events.

It was observed from the TLS-ARX model results that it
could not perform effectively in predicting water table depths
at various ranges of rainfall, which in turn could lead to poor

decisions in managing the groundwater resources. However,
the BW-RD-ARX model performed better in predicting water
levels for all ranges of rainfall (0–10, 10–20 and >20 cm) and
therefore prediction results could lead to better decision mak-
ing in water resources management.

Figure 9. Spatially interpolated MAE index from (a) Ds-ARMA, (b) TLS-ARX and (c) BW-RD-ARX models.

Figure 10. Spatially interpolated R2 index from (a) Ds-ARMA, (b) TLS-ARX and (c) BW-RD-ARX models.
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The results at discrete well locations in the study zone
showed that the binary-weighted method of estimating the
TFN model (BW-RD-ARX) was more effective in predicting
groundwater levels when compared to traditional ways of
estimating the TFN model and univariate time series model.
Spatially interpolated MAE and R2 values among all the
developed models showed that the BW-RD-ARX model per-
formed significantly better than the other models (Figs 9 and
10). In general, it was observed from the interpolated R2 and
MAE values that Ds-ARMA and TLS-ARX model predictions
were comparatively poor at high-altitude regions. However,
the BW-RD-ARX model predictions were promising in such
places. In spite of the good performance of the BW-RD-ARX
model, there is further scope for improving the modelling
framework and hence the accuracy of predictions.

● In this study, rainfall and water level data were mod-
elled using a TFN-based ARX approach as rainfall and
water level data are widely available for many places.
However, the nonlinear relationship between rainfall
and water level process could not be captured by the
ARX models as it was developed based on linear rela-
tionships between input and output data. However,
instead of rainfall, percolation or recharge time series
generated from the physically-based flow models can be
used in an ARX modelling approach, which might
further improve the model results.

● In this study, a binary-weighted least square approach
was tested for water level rise and drop events of water
level data irrespective of the specific seasonal water level
rise and drop events. If the binary weights were further
subdivided according to the monsoon/non-monsoon
seasonal water level rise and drop events, the resulting
optimized parameters of the ARX model might further
improve the model efficiency.

● A point-based temporal modelling of water table depths
may give further insights into groundwater response for
an external input such as rainfall only at a particular
location, which cannot be interpreted precisely over a
large scale (basin scale). This can be effectively analysed
by a spatio-temporal modelling of water level depths
based on the regional ARX models by a physically-
based ARX with ancillary data such as DEM, soil data
and other relevant hydrogeological data.
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