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Abstract

Groundwater level prediction and forecasting using univariate time series models are useful for effective ground-
water management under data limiting conditions. The seasonal autoregressive integrated moving average
(SARIMA) models are widely used for modeling groundwater level data as the groundwater level signals possess
the seasonality pattern. Alternatively, deseasonalized autoregressive and moving average models (Ds-ARMA) can
be modeled with deseasonalized groundwater level signals in which the seasonal component is estimated
and removed from the raw groundwater level signals. The seasonal component is traditionally estimated by
calculating long-term averaging values of the corresponding months in the year. This traditional way of estimating
seasonal component may not be appropriate for non-stationary groundwater level signals. Thus, in this study, an
improved way of estimating the seasonal component by adopting a 13-month moving average trend and corre-
sponding confidence interval approach has been attempted. To test the proposed approach, two representative
observation wells from Adyar basin, India were modeled by both traditional and proposed methods. It was
observed from this study that the proposed model prediction performance was better than the traditional
model’s performance with R2 values of 0.82 and 0.93 for the corresponding wells’ groundwater level data.
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INTRODUCTION

Hydrological systems are widely studied using models that describe and relate various physical
processes. Conceptual or physical models are the key tools to understand and predict the variable
responses of the system (Anderson & Woessner 1992). However, most of the time, the absence of
adequate physical parameters and poor understanding of the physical system may lead to poor mod-
eling of the system. Hence, stochastic modeling that preserves the statistical relationship within the
past observations is often used to predict/forecast the response of a system. A time series model is
an empirical model for stochastically simulating and forecasting the behavior of uncertain hydrologic
systems (Chatfield & Weigend 1994; Sannasiraj et al. 2004; Kim et al. 2005). This kind of model is
often useful to model any hydrological system such as groundwater system for groundwater level fluc-
tuation modeling and forecasting where there is limited availability of additional auxiliary data sets.
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In general, stochastic time series models can be classified into two kinds: univariate and multi-
variate models. Univariate models consist of single variable series which can be modeled by
autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) group
of models (Young 1999; Ahn 2000; Bidwell 2005; Adamowski & Chan 2011; Pektas & Cigizoglu
2013; Bayer et al. 2017), or traditional decomposition-based time series models (Peng & Liu 2000;
Yang et al. 2009; Lu et al. 2013; Moeeni et al. 2017). On the other hand, multivariate models involve
two or more input variables and their dynamic relationships with the output can be modeled by trans-
fer function-noise (TFN) modeling technique. For example, TFN models predict the groundwater level
response with respect to rainfall pulses (Tankersley et al. 1993; Bierkens et al. 1999; Bidwell 2005; Yu
& Chu 2012; Shirmohammadi et al. 2013; Mohanasundaram et al. 2017). Multiple linear regression
(MLR) techniques for predicting groundwater level involve the process of correlating the groundwater
levels with one or more input variables which are causing the groundwater level responses (Sahoo &
Jha 2015; Seeboonruang 2015; Seo et al. 2015). The application of artificial neural networks (ANN)
and wavelet decomposition and the combination of ANN and wavelet decomposition models are
also widely used for predicting groundwater level signals (Coulibaly et al. 2001; Coppola et al.
2003; Daliakopoulos et al. 2005; Kisi 2010; Mohanty et al. 2010; Adamowski & Chan 2011;
Sreekanth et al. 2011; Maheswaran & Khosa 2013; Maiti & Tiwari 2014; Khaki et al. 2015; Nourani
et al. 2015). However, the accuracy of the prediction and forecasting efficiency of the univariate time
series model is mainly dependent on the proper conceptualization, model identification, and par-
ameter estimation. Therefore, time series models for groundwater level signals must be considered
for the seasonal component properly as monthly groundwater level signals are mostly influenced
by periodicity or seasonality.
Seasonal autoregressive integrated moving average (SARIMA) is one of the varieties of ARIMA

models. SARIMA models are especially applied to time series data having a strong seasonality com-
ponent. Seasonal component is the significant component in the hydrological time series variables
such as rainfall, stream flow, and groundwater level time series data. In general, finding suitable
ARIMA and SARIMA models for modeling a univariate system is a trial and error process to find
the suitable model structure with appropriate model parameters based on Box and Jenkins time
series methodology (Box & Jenkins 1976). There have been many studies illustrating the application
of SARIMA models for flow modeling and forecasting the flow in river systems (Govindasamy 1991;
Mondal & Wasimi 2006; Modarres 2007; Wong et al. 2007; Fernández et al. 2008; Martins et al.
2011). Comparison of ARIMA models against deseasonalized ARMA (DARMA) models for
weekly, monthly, and bi-monthly time series of karstic flow showed that DARMA model forecasting
performance was better for the bi-monthly and monthly time series flow data, whereas the ARIMA
model performed only slightly better than DARMA models for weekly data (Ghanbarpour et al.
2012). Similarly, there have been many studies illustrating the application of SARIMA models to
predict and forecast the groundwater level fluctuations (Ahn & Salas 1997; Ahn 2000; Montanari
et al. 2000; Adhikary et al. 2012; Shirmohammadi et al. 2013).
Paul (2008) developed a univariate time series model to forecast groundwater levels. Two different

multiplicative SARIMA models, SARIMA (2,0,0)(3,1,0)12 and SARIMA ((1,2,10),0,0)(3,1,0)12 were
developed. The developed models were compared for their forecasting accuracy in terms of root
mean square (RMSE) values. The SARIMA ((1,2,10),0,0)(3,1,0)12 model performed better than
the SARIMA (2,0,0)(3,1,0)12 model. Similarly, Adhikary et al. (2012) developed various seasonal
ARIMA models and traditional decomposition time series models to fit the weekly groundwater
level fluctuation data. Seasonal ARIMA (1,1,1)(1,1,1)52 model was selected among other forms of
seasonal ARIMA models since the selected model error was free from autocorrelation process. In
addition to that, it was proved in their study that the forecasting performance of the chosen seasonal
ARIMA (1,1,1)(1,1,1)52 model was performing better in terms of mean absolute error (MAE), mean
square error (MSE), and maximum absolute error (Max AE) when compared to traditional
iwaponline.com/h2open/article-pdf/2/1/25/534605/h2oj0020025.pdf
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decomposition models. As the seasonal component is significant in the raw groundwater level signals,
the coefficient for fitting the seasonal AR and MA components in SARIMAmodels perhaps have huge
uncertainty in reproducing the seasonal variation in the prediction or validation period.
Decomposition-based models are developed based on decomposing the actual time series signal

into trend, seasonal, and random components. Decomposition model applications on groundwater
level response have been widely studied, for example, Seeboonruang (2014) studied the groundwater
level response against climate and anthropogenic activities by decomposing deep groundwater signal
into trend, seasonal, and random components. Eight different methods of trend estimation technique
were applied to long-term groundwater levels monitored in the lower Chao Phraya basin in Thailand.
Fifth-order polynomial interpolation of trendlines significantly matched with groundwater withdrawal
pattern. Similarly, the periodic behavior occurring from detrended residuals was compared with the
global climatic variability. They concluded that the magnitude response of deep groundwater in the
region was much affected by the anthropogenic activities as compared to the global climatic
variability. Similarly, Almedeij & Al Ruwaih (2006) investigated the periodic pattern of groundwater
level fluctuation for six monitoring wells located in residential areas in Kuwait. Monthly groundwater
level measurements obtained from observation wells were correlated with monthly averaged tempera-
ture and monthly totaled rainfall time series data over 10 years. The cyclic pattern of groundwater
level together with rainfall and temperature was examined in the frequency domain using periodo-
gram analysis. The trend component of groundwater level series was fitted by simple regression
method in their study. Furthermore, they estimated the seasonal component by calculating monthly
averages of detrended groundwater level series. However, the traditional way of fitting the trend com-
ponent and estimating the seasonal component might cause a significant error when the mean and
variance in the groundwater level time series data is a heteroscedastic process (varying mean and var-
iance). Therefore, there is a need to consider a proper trend and seasonal estimate in the groundwater
level time series data for minimizing the error in real-time prediction and forecasting the groundwater
levels using decomposition-based time series models.
Traditional deseasonalization technique for monthly groundwater level data is done by calculating

long-term monthly average values for the corresponding months from the time series data. The long-
term monthly average values are used as the seasonal component in the traditional decomposition-
based models. In general, these seasonal values denote the representative average values from
the long-term groundwater level fluctuation data. These seasonal values may be representative
average values for the stationary groundwater level fluctuation data as mean and variance is almost
constant over time. However, these seasonal values might not be representative average values for
non-stationary groundwater level fluctuation data as mean and variance varies over time.
Therefore, in this study, we have developed a novel technique to properly estimate the seasonal

component and deseasonalize the time series by adopting a 13-month trend and corresponding
confidence interval-based approach. The specific objectives of this study are: (1) to construct the con-
fidence interval for irregularly varying groundwater level signal based on 13-month moving average
trend values to estimate the seasonal component and (2) to compare the prediction performance of
the proposed DARMA model against the traditional DARMA and SARIMA models.
METHODOLOGY

Basic steps in time series modeling

Time series analysis is done by four major steps: (1) model identification, (2) parameter estimation, (3)
residual verification, and (4) model application. Before identifying the model structure, the raw time
series data were checked for non-stationary unit root process using an augmented Dickey–Fuller
iwaponline.com/h2open/article-pdf/2/1/25/534605/h2oj0020025.pdf
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(ADF) test. The ADF test tests the null hypothesis that the model has a unit root against an alternative
hypothesis of a stationary process. The ADF test is given by:

yt ¼ cþ fyt�1 þ b1Dyt�1 þ b2Dyt�2 þ . . .þ bpDyt�p þ 1t (1)

the null hypothesis is,
H0: f¼ 0
and the alternate hypothesis is,
H1: f, 0

where yt is the time series value at time t; D is the differencing operator; p is the number of lagged
difference terms; f is the autoregressive parameter; 1t is the white noise residual; and c is the constant.
Non-stationary data can be corrected by first- or higher-order differencing of the time series data

to make them stationary. Once the data are converted to the stationary process, a suitable number
of AR and MA model parameters were identified by looking at the autocorrelation function (ACF)
and partial autocorrelation function plots (PACF). After identifying the ARMA model structure, the
parameter values were estimated by the maximum likelihood technique. Finally, the estimated
model residuals were checked for independence, normality, and homoscedastic conditions prior to
prediction and forecasting applications during the validation time period.

Deseasonalized ARMA models

Traditional deseasonalization method

Traditionally, the seasonal component was estimated by calculating the long-term monthly average
values for each of the months from raw time series data. The deseasonalized time series was obtained
by subtracting the estimated seasonal component from raw time series data. The traditional deseaso-
nalized series was modeled with ARMAmodel parameters, represented here as TDs-ARMA as follows
(Hipel & McLeod 1994):

f(B)(yij � m̂j) ¼ cþ u(B)1t (2)

f(B) ¼ 1� f1B� f2B
2 � . . .� fpB

p

u(B) ¼ 1� u1B� u2B2 � . . .� uqBq

where f1 …fp are non-seasonal autoregressive parameters of order p; u1 … uq are non-seasonal
moving average parameters of order q; yij is the groundwater level value during the month j and
year i; m̂j is the estimated mean monthly values corresponding to the month j.

Proposed deseasonalization method

The proposed 13-month moving average and corresponding confidence interval-based seasonal
estimation and deseasonalization methods are explained in four major steps as follows.
Step 1. Estimating 13-month trend-cycle term: The trend component of the time series data was

estimated by cell centered 13-month moving average filter. This rolling 13-month moving average
filter calculates the trend component at the center cell based on the adjacent six cells’ values on
both the sides of the center cell.
Step 2. Constructing confidence interval around the 13-month moving average trend line: The mean

and standard deviation values of each 13-cell sliding window were calculated along with the estimated
trend values. The confidence interval was constructed around the 13-month trend line using the
estimated mean and standard deviation values. The standard equations of 99% confidence interval
iwaponline.com/h2open/article-pdf/2/1/25/534605/h2oj0020025.pdf
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were used for constructing the confidence interval around the trend line. The upper bound (Ub) and
lower bound (Lb) equations for 99% confidence interval are given as follows:

Ub ¼ Ym þ 2:54� Ysffiffiffiffiffi
N

p (3)

Lb ¼ Ym � 2:54� Ysffiffiffiffiffi
N

p (4)

where Ym is mean of the sliding window values; Ys is standard deviation of the sliding window values;
N is number of sliding window cells (13 numbers).
Step 3. Modified deseasonalizing: Unlike traditional deseasonalizing, the range of the raw time

series data used for calculating the seasonal component in modified deseasonalizing were restricted
with the bounded regions based on the constructed confidence interval limits (Equations (3) and (4)).
As the confidence interval region excludes some of the extremely varying groundwater level values,
the smoothed range of the groundwater level data set was only used for calculating the seasonal com-
ponent. This way of limiting the groundwater level time series data from extreme values appropriately
estimates the seasonal component for heteroscedastic groundwater level signals. But, the traditional
deseasonalization method considers the entire actual range of groundwater level time series data for
calculating the seasonal component, which might be overestimated in the case of highly varying
groundwater level conditions. Furthermore, the estimated modified seasonal component was detected
from the raw time series data to obtain the modified deseasonalized time series.
Step 4. Fitting the ARMA model for modified deseasonalized time series data: The modified

deseasonalized time series data were fitted with proper AR and MA models, represented here as
MDs-ARMA as follows:

f(B)(yij � m̂mj) ¼ cþ u(B)1t (5)

where m̂mj is the monthly average estimate corresponding to the month j from the modified deseaso-
nalization approach.
SARIMA models

Multiplicative ARIMA model, also called SARIMA model, is an extended version of ARIMA model
where seasonal autoregressive (SAR) and seasonal moving average (SMA) terms can be modeled
along with non-seasonal AR and MA models. It is represented as follows:

f(B)(1� B)DF(B)(1� Bs)Dsyt ¼ cþ u(B)Q(B)1t (6)

where

f(B) ¼ 1� f1B� f2B
2 � . . .� fpB

p

u(B) ¼ 1� u1B� u2B2 � . . .� uqBq

F(B) ¼ 1�F p1Bp1 �F p2Bp2 � . . .�FpsBps

Q(B) ¼ 1�Qq1Bq1 �Qq2Bq2 � . . .�QqsBqs

where f1 …fp are non-seasonal autoregressive parameters; u1 … uq are non-seasonal moving average
parameters; Fp1 …Fps are seasonal autoregressive parameters; Qq1 …Qqs are seasonal moving aver-
age parameters; yt is the water level value at time t; 1t is the white noise; p,q are non-seasonal orders;
iwaponline.com/h2open/article-pdf/2/1/25/534605/h2oj0020025.pdf
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ps,qs are seasonal orders; c is a constant; D is the order of non-seasonal differencing; and Ds is the
order of seasonal differencing.

Model information criterion indices

Different forms of SARIMA models can be specified by changing the number of seasonal and non-
seasonal parameters for the same time series data. Therefore, an information criterion-based value
will help in selecting a better model by compromising the error from the models along with the
number of significant model parameters used in the model and the number of data values (n). In
this context, the Akaike information criterion (AIC) and Bayesian information criterion (BIC) are
used in this study to compare the SARIMA models and choose the best one among them. AIC
(Akaike 1974) and BIC (Schwarz 1978) formulations are given as follows:

AIC ¼ �2log(L)þ 2m (7)

BIC ¼ �2log(L)þmlog(n) (8)

L ¼
P

1̂2i
n

(9)

where L is the log likelihood value; m is the number of parameters in the model; n is the number of
observations; and 1̂2i is the residual sum square.

Residual test

Residuals of the calibrated time series models were tested for their serial independence. Ljung–Box
(LB) test was used to test if the model residual autocorrelation coefficients were statistically different
from zero at a given level of significance or not. LB test is given by (Ljung & Box 1978):

Q ¼ n(nþ 2)
Xm
k¼1

r̂2k
n� k

� x2m (10)

where n is sample size; m is the lag length; r̂ is the autocorrelation coefficient; and x2m is the
Chi-square value with m degrees of freedom.

Model performance indices

Root mean square error (RMSE) and coefficient of determination (R2) indices were used to assess
the developed time series model performances during the validation data period. The RMSE and
R2 formulations are given as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1

(Ft � Yt)
2

vuut (11)

R2 ¼ 1�

PN
t¼1

(Yt � F̂t)

PN
t¼1

(Yt � �Yt)

0
BBB@

1
CCCA

2

(12)

where N is the sample size; Yt is the observed value; Ft is the forecasted/predicted value; and �Yt is the
observed mean value.
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Application site: Adyar basin

The Adyar basin is in the northeast coastal part of Tamil Nadu, India (Figure 1). The basin receives
rainfall during both southwest (June–September) and northeast monsoons (October–December) with
the northeast monsoon contributing more than 65% of the total annual average rainfall. The south-
west monsoon rainfall is erratic in nature and summer rainfall is negligible. Long-term annual
average rainfall is about 1,315 mm (WRO 2007). Elevation ranges from 183 m in the west to sea
level in the eastern part of the basin. Soils in the basin have been classified into clayey, black, red
sandy, alluvial, and colluvial soils. Black soils occur in the depressions adjacent to hilly areas in
the western part. Alluvial soils occur along the river courses and eastern part of the coastal areas.
Major hydrogeology in the basin has been classified as unconsolidated, semi-consolidated, and weath-
ered and fractured rock formations. Groundwater occurs under phreatic and semi-confined
conditions in inter-granular pore spaces in sands, sandstones, and in bedding planes and thin fractures
in shales (WRO 2007). The Adyar basin river network with the locations of observation wells is shown
in Figure 1. Observation wells are mostly concentrated in the eastern part of the Adyar basin.
Figure 1 | Study area with observation wells’ location map.
Data used

Twenty-nine observation wells monthly depth to water table data were procured from the Institute for
Water Studies (IWS), Taramani. However, for brevity, the proposed time series method, MDs-ARMA,
along with TDs-ARMA and SARIMA was tested on two observation wells (well-13012 and well-
13235) as shown in Figure 1 (as selected wells). The depth to water table data were converted to
groundwater level elevation above mean sea level after subtracting the depth to water table values
from digital elevation model values of the corresponding well locations in Adyar basin. The total
length of the monthly groundwater level data used in this study is about 240 months (N¼ 240)
from January 1988 to December 2007. Out of 240 months, the first 180 months’ values (3/4th of
the total data set) were used to calibrate the times series models and the remaining 60 months’
values (1/4th of the total data set) were used to validate the models.
iwaponline.com/h2open/article-pdf/2/1/25/534605/h2oj0020025.pdf
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RESULTS AND DISCUSSION

Autocorrelation and partial autocorrelation analysis

As the first step in time series modeling, raw time series data were analyzed for the unit root non-
stationary process (Figure 2). From the ADF test, it was observed that the null hypothesis for both
the wells (well-13012 and well-13235) were accepted with the p values of 0.57 and 0.43 at 95% con-
fidence level, respectively. According to ADF test, both the wells (well-13012 and well-13235)
groundwater level times series data were implying non-stationarity due to the existence of the unit
root process. Therefore, in SARIMA models, a seasonal differencing was done to change the non-
stationary series to a stationary series. However, in the case of deseasonalized models, long-term aver-
age monthly values subtracted from raw time series (deseasonalized series) data itself changed the
non-stationary data into stationary data. Therefore, no further differencing was done in the deseaso-
nalized data as the deseasonalized time series itself was satisfying the stationarity test.
Figure 2 | Groundwater level data for (a) well-13012 and (b) well-13235.
ACF and PACF plots of raw time series data for both the wells show the strong seasonality pattern
in the monthly groundwater level time series data (Figures 3 and 4). This is obvious from the fact that
iwaponline.com/h2open/article-pdf/2/1/25/534605/h2oj0020025.pdf



Figure 3 | ACF plots for (a) well-13012 and (b) well-13235.
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the groundwater level response is a function of climatic variables such as rainfall and evapotranspira-
tion which are also seasonal in nature. Therefore, the SARIMA models were chosen with seasonal
differencing along with SAR and SMA parameters. The partial autocorrelation was significant
at the lag of 1 month for both the wells which indicates that the data need to be modeled with
simple non-seasonal AR process with one AR and MA parameters for both SARIMA and DARMA
models.

Deseasonalized time series using traditional and proposed methods

Groundwater level signal along with 13-month moving average trend and the constructed confidence
interval for both the wells are shown in Figures 5(a) and 6(a). The extreme variation in the ground-
water level signal out of the confidence interval appears during pre-monsoon (June) and post-
monsoon (January) seasons within the year and a repeated pattern was observed for all the years in
the calibration data set (Figures 5(a) and 6(a)). The seasonal component was estimated by averaging
the corresponding monthly values from January to December in the observed groundwater level sig-
nals. The resulting 12-month values were repeated for the remaining years during the calibration
period. This is shown in Figures 5(b) and 6(b) as the traditional seasonal component. On the other
iwaponline.com/h2open/article-pdf/2/1/25/534605/h2oj0020025.pdf



Figure 4 | PACF plots for (a) well-13012 and (b) well-13235.
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hand, the modified seasonal component was estimated from January to December by averaging the
corresponding months using the time series data in which the extremely varying groundwater level
signals beyond the confidence interval were replaced with the corresponding boundary values of
the confidence interval. The resulting 12-month values were repeated for the remaining years
in the calibration period. This is shown in Figures 5(b) and 6(b) as modified seasonal component.
As the extremely varying time series data were smoothed by confidence interval values, the resulting
estimated modified seasonal component values were relatively lesser in magnitude when compared to
traditionally estimated seasonal values (Figures 5(b) and 6(b)).
A significant difference among the traditional and modified seasonal component values was

observed. For example, the estimated traditional and modified seasonal values ranged from 3.5 m
to 7 m and 4.7 m to 6.4 m, respectively, for well-13012. A similar difference in the computed seasonal
values among traditional and modified time series methods was observed for the other well (well-
13235) also. Furthermore, the deseasonalized time series for TDs-ARMA and MDs-ARMA were
obtained by subtracting the respective estimated traditional and modified seasonal components
from the raw groundwater level time series signals for both the wells (Figures 5(c) and 6(c)). As
there was a difference among traditional and modified seasonal estimates, there were corresponding
changes in the calculated deseasonalized time series data (Figures 5(c) and 6(c)).
iwaponline.com/h2open/article-pdf/2/1/25/534605/h2oj0020025.pdf



Figure 5 | Decomposition of the time series data by MDs-ARMA model for (a) trend, (b) seasonal, and (c) deseasonal
components of well-13012.
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Figure 6 | Decomposition of the time series data by MDs-ARMA model for (a) trend, (b) seasonal, and (c) deseasonal
components of well-13012.
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Model identification and parameter estimation

SARIMA models

The initial model structure can be guessed based on ACF and PACF plots of the time series data with
unique combinations of seasonal and non-seasonal parameters for SARIMA models (Figures 3 and 4).
Therefore, the three most suitable SARIMA model forms were identified for each well’s time series
data, from which the best one was selected based on AIC and BIC values (Table 1). The three
identified forms of SARIMA models for both the wells are as follows:
SARIMA(1,0,0)(1,1,0)12

(1� f1B)(1�F12B12)(1� B12)yt ¼ cþ 1t (13)

SARIMA(1,0,1)(1,1,0)12

(1� f1B)(1�F12B12)(1� B12)yt ¼ cþ (1� u1B)1t (14)

SARIMA(1,0,1)(0,1,1)12

(1� f1B)(1� B12)yt ¼ cþ (1� u1B)(1�Q12B12)1t (15)

Table 1 shows that the AIC and BIC values were comparatively less for the third SARIMA model,
SARIMA(1,0,1)(0,1,1)12, when compared to the other two SARIMA models for both the wells. There-
fore, the best model was chosen as SARIMA(1,0,1)(0,1,1)12 for further parameter estimation and
model predictions. The best SARIMA model parameters were estimated using maximum likelihood
technique and the estimated values and corresponding statistics are given in Table 2. Statistical
t-test and p-value for AR and SMA parameters were highly significant at 0.01 alpha level (99%
Table 2 | Estimated parameters of the selected SARIMA model

Well no. Model Parameter Value Standard error t-value p-value

13012 SARIMA(1,0,1)(0,1,1)12 Constant �0.02 0.02 �0.77 0.22

φ1 0.65 0.08 8.41 0.00

θ1 0.20 0.08 2.41 0.01

ϴ12 �0.79 0.05 �15.00 0.00

13235 SARIMA(1,0,1)(0,1,1)12 Constant 0.01 0.02 0.38 0.35

φ1 0.80 0.05 17.04 0.00

θ1 0.03 0.07 0.48 0.32

ϴ12 �0.77 0.05 �15.99 0.00

Table 1 | Model assessment indices of the identified SARIMA models using calibration data set

Well no. Model AIC BIC

13012 SARIMA(1,0,0)(1,1,0)12 470.6 480.2

SARIMA(1,0,1)(1,1,0)12 470.0 482.5

SARIMA(1,0,1)(0,1,1)12 429.9 442.7

13235 SARIMA(1,0,0)(1,1,0)12 585.8 595.4

SARIMA(1,0,1)(1,1,0)12 587.6 600.4

SARIMA(1,0,1)(0,1,1)12 554.5 567.3
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confidence level), whereas one of the MA parameters for well-13235 was not statistically significant.
The constant parameters were also not statistically significant for both wells (Table 2). Therefore, it
can be concluded that the SARIMA (1,0,1)(0,1,1)12 process during the calibration time period was
mainly driven by AR and SMA parameters rather than MA and constant parameters.
TDs-ARMA model

TDs-ARMA model parameters were estimated using maximum likelihood method and the correspond-
ing statistics are given in Table 3. The p-value of autoregressive parameters for both the wells’ data was
highly significant at 0.01 alpha level (99% confidence level). However, the MA parameters for both the
wells show relatively less significance than AR parameters during the calibration period.
Table 3 | Estimated parameters for TDs-ARMA model

Well no. Model Parameter Value Standard error t-value p-value

13012 TDs-ARMA(1,1) Constant 0.00 0.06 0.05 0.48

φ1 0.74 0.07 10.90 0.00

θ1 0.15 0.09 1.62 0.05

13235 TDs-ARMA(1,1) Constant 0.00 0.08 0.03 0.49

φ1 0.81 0.05 16.79 0.00

θ1 0.01 0.07 0.12 0.45
MDs-ARMA model

The AR and MA model coefficients for the MDs-ARMA model were estimated using the maximum
likelihood estimation technique using MATLAB software. The estimated AR and MA model par-
ameters for MDs-ARMA model are given in Table 4. The AR coefficients for both the wells were
significant at alpha 0.01 level (99% confidence level), but the MA coefficients were significant at
0.05 alpha level and 0.01 alpha level for well-13012 and well-13235, respectively (Table 4). This
shows that the modified deseasonalized series model yields significant values for both AR and MA
coefficients, unlike the traditional deseasonalized time series model.
Table 4 | Estimated parameters for MDs-ARMA model

Well no. Model Parameter Value Standard error t-value p-value

13012 MDs-ARMA(1,1) Constant �0.02 0.08 �0.29 0.39

φ1 0.71 0.08 8.80 0.00

θ1 0.23 0.10 2.33 0.01

13235 MDs-ARMA(1,1) Constant 0.02 0.11 0.18 0.43

φ1 0.75 0.06 11.79 0.00

θ1 0.17 0.08 2.13 0.02
Residual analysis for the developed models

A diagnostic check for the calibrated SARIMA, TDs-ARMA, and MDs-ARMA models was done using
residual analysis for white noise process (zero mean with unit variance). The Ljung and Box statistical
test proves that the overall serial correlation of the modeled error was statistically insignificant for
both the wells for all three models.
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Groundwater level prediction and validation by developed models

One-month rolling ahead prediction of the developed time series models along with the observed
groundwater level data during the validation period for both the wells are shown in Figure 7(a)
and 7(b). In general, it was observed that the decomposition-based ARMA models (TDs-ARMA and
MDs-ARMA) predict the groundwater levels better than the SARIMA model. Although the TDs-
ARMA and MDs-ARMA model performances were relatively close to each other, the MDs-ARMA
model performs comparatively better than the TDs-ARMA model for both the wells.
The improved model performance of the MDs-ARMA model over TDs-ARMA model was mainly

due to the improved estimated seasonal component based on 13-month trend and confidence interval
approach. However, the traditional way of estimating the seasonal component values were relatively
higher than the proposed model thus reducing the overall model performance for the TDs-ARMA
model (Figure 7(a) and 7(b)).
SARIMA models are the least performing models for both the wells as they highly over- and under-

predict the actual groundwater level signal peaks and troughs during pre-monsoon and post-monsoon
seasons (Figure 7). This is mainly due to the fact that the estimated SMA parameters were not able to
Figure 7 | One-month rolling ahead prediction of groundwater levels using TDs-ARMA, MDs-ARMA, and SARIMA models for (a)
well-13012 and (b) well-13235.
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capture the actual variation in the extreme peaks and troughs of the groundwater level signals. This
uncertainty in SMA parameters might have been lower for the homoscedastic (constant mean and
constant variance) groundwater level signals as the seasonal variation among the years is perhaps
less variable. However, in this study, both the groundwater level signals show a strong heteroscedastic
process, the estimated SMA parameters fail to mimic the actual seasonal variation in the groundwater
level signals.
Figure 8 shows the predicted and observed groundwater levels on 1:1 diagonal plot for all three

models. As well-13012 is located in the highly elevated hard rock terrain part of the Adyar basin,
Figure 8 | Predicted and observed groundwater levels on 1:1 scatter line for TDs-ARMA, MDs-ARMA, and SARIMA models for
(a) well-13012 and (b) well-13235.
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the variation in the groundwater level signal is naturally varying in higher magnitude as the rainfall
response in the fractured geological system is highly dynamic. This is the reason for all models predict-
ing the groundwater level signal with comparatively higher deviation from the 1:1 line (Figure 8(a)).
However, well-13235 is located in the central part of the basin where the geological condition is
highly porous, thus the rainfall response in this region on groundwater level signal is more or less uni-
form. As a result, the developed time series model predictions were close to the 1:1 line (Figure 8(b)).
However, as expected, the MDs-ARMA model predicted values were lying closer to the 1:1 line than
the other two models for both the well locations. SARIMA model-predicted values during some
periods highly deviated from the diagonal line, thus reducing this model’s overall performance signifi-
cantly compared to TDs-ARMA and MDs-ARMA models (Figure 8).
The calculated RMSE and R2 values during the validation period for the developed time series

models are shown in Table 5. MDs-ARMA model prediction performance during the validation
period was always higher when compared to the other two models. The reduction in RMSE values
for the MDs-ARMA model over the TDs-ARMA and SARIMA models was 10 cm to 30 cm and
100 cm to 180 cm, respectively, for both wells (Table 5).
Table 5 | Performance assessment of the developed time series models during the validation period

Well Models

Validation statistics

RMSE (m) R2

13012 SARIMA 1.75 0.13

TDs-ARMA 0.90 0.76

MDs-ARMA 0.79 0.82

13235 SARIMA 2.53 0.00

TDs-ARMA 0.93 0.86

MDs-ARMA 0.64 0.93
CONCLUSIONS

A unique deseasonalized ARMA model, MDs-ARMA, was developed to assess its prediction ability
over traditional SARIMA and TDs-ARMA models in this study. A novel deseasonalizing method
was proposed in this study based on 13-month moving average trend and confidence interval
method for estimating the seasonal component. These models were tested for two observation
wells’ groundwater level signals. The groundwater level signal for both wells shows a strong seasonal
pattern which was further identified from the ACF and PACF plots. Based on ACF and PACF plots,
suitable SARIMAmodels with different forms were recommended, from which a best SARIMAmodel
(SARIMA (1,0,1)(0,1,1)12) was selected based on AIC and BIC values. Similarly, the deseasonalized
time series models (TDs-ARMA and MDs-ARMA) were modeled with one AR and MA parameter as
they were already adjusted for the seasonal component.
Maximum likelihood method was adopted to estimate the developed model parameters. Autore-

gressive parameters were more highly significant than other parameters in all the developed time
series models. The calibrated models were then used to predict the groundwater levels in a validation
period and corresponding RMSE and R2 values were calculated for the respective models. It was
observed that the proposed method was performing better than traditional deseasonalized ARMA
and SARIMA models. The specific conclusions from this study can be summarized as follows:

• Deseasonalized ARMA models consider less number of parameters when compared to SARIMA
models as deseasonalized ARMA models were modeled with one AR and MA parameters, whereas
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SARIMA models were modeled with one extra seasonal MA parameter along with one nonseasonal
AR and MA parameter.

• Both deseasonalized ARMA models (TDs-ARMA and MDs-ARMA) reproduced the seasonal vari-
ation pattern of the actual groundwater level signal during the validation period.

• The estimated seasonal component by traditional deseasonalizing approach was comparatively
higher than the proposed deseasonalizing approach as the actual variation in the groundwater
level signal was used to estimate the long-term monthly average values. This reduces the TDs-
ARMA model performances when compared to MDs-ARMA model.

• The proposed MDs-ARMA model consistently performed better with both the wells’ groundwater
level signals, thus, the application of this model is robust across various geological conditions.

In this study, these time series models were evaluated with 1-month rolling ahead prediction
method. However, the multi-time step prediction and forecasting performance of the developed
models need to be analyzed for long-term forecasting applications. Although univariate time series
models are useful in prediction and forecasting of groundwater level signals under data limiting con-
ditions, they cannot be used to predict the response due to climate change and land use change
scenarios. Under such conditions, the time series model and their coefficients need to be related to
the physical process and parameters to assess the climatic and land use change cases.
ACKNOWLEDGEMENTS

We would like to acknowledge the State Ground and Surface Water Resources Data Centre, IWS,
Taramani, Chennai for providing groundwater level data to carry out this study. We would like to
acknowledge the Water Engineering and Management program at Asian Institute of Technology
for providing the computing facility. Finally, we would like to thank the reviewers for their valuable
comments to improve this manuscript.
REFERENCES

Adamowski, J. & Chan, H. F. 2011 A wavelet neural network conjunction model for groundwater level forecasting. Journal of
Hydrology 407 (1), 28–40.

Adhikary, S. K., Rahman, M. M. & Gupta, A. S. 2012 A stochastic modelling technique for predicting groundwater table
fluctuations with time series analysis. International Journal of Applied Science and Engineering Research 1 (2), 238–249.

Ahn, H. 2000 Modeling of groundwater heads based on second-order difference time series models. Journal of Hydrology
234 (1–2), 82–94.

Ahn, H. & Salas, J. D. 1997 Groundwater head sampling based on stochastic analysis. Water Resources Research 33 (12),
2769–2780.

Akaike, H. 1974 A new look at the statistical model identification. IEEE Transactions on Automatic Control 19 (6), 716–723.
Almedeij, J. & Al-Ruwaih, F. 2006 Periodic behavior of groundwater level fluctuations in residential areas. Journal of Hydrology

328, 677–684.
Anderson, M. P. & Woessner, W. W. 1992 Applied Groundwater Modeling: Simulation of Flow and Advective Transport.

Academic Press, San Diego, CA, USA.
Bayer, F. M., Bayer, D. M. & Pumi, G. 2017 Kumaraswamy autoregressive moving average models for double bounded

environmental data. Journal of Hydrology 555, 385–396.
Bidwell, V. J. 2005 Realistic forecasting of groundwater level, based on the eigenstructure of aquifer dynamics.Mathematics and

Computers in Simulation 69, 12–20. https://doi.org/10.1016/j.matcom.2005.02.023.
Bierkens, M. F. P., Knotters, M. & van Geer, F. C. 1999 Calibration of transfer function-noise models to sparsely or irregularly

observed time series. Water Resources Research 35 (6), 1741–1750.
Box, G. E. P. & Jenkins, G. W. 1976 Time Series Analysis: Forecasting and Control, revised edn. Holden-Day, San Francisco,

CA, USA.
Chatfield, C. & Weigend, A. S. 1994 Time series prediction: forecasting the future and understanding the past: Neil A.

Gershenfeld and Andreas S. Weigend, 1994, ‘The future of time series’, in: A. S. Weigend and N. A. Gershenfeld, eds
(Addison-Wesley, Reading, MA), 1–70. International Journal of Forecasting 10 (1), 161–163.
iwaponline.com/h2open/article-pdf/2/1/25/534605/h2oj0020025.pdf

http://dx.doi.org/10.1016/j.jhydrol.2011.06.013
http://dx.doi.org/10.1016/S0022-1694(00)00242-0
http://dx.doi.org/10.1029/97WR02187
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1016/j.jhydrol.2006.01.013
http://dx.doi.org/10.1016/j.jhydrol.2017.10.006
http://dx.doi.org/10.1016/j.jhydrol.2017.10.006
http://dx.doi.org/10.1016/j.matcom.2005.02.023
http://dx.doi.org/10.1029/1999WR900083
http://dx.doi.org/10.1029/1999WR900083
http://dx.doi.org/10.1016/0169-2070(94)90058-2
http://dx.doi.org/10.1016/0169-2070(94)90058-2
http://dx.doi.org/10.1016/0169-2070(94)90058-2


H2Open Journal Vol 2 No 1
43 doi: 10.2166/h2oj.2019.022

Downloaded from https://
by guest
on 25 August 2020
Coppola, E., Szidarovszky, F., Poulton, M. & Charls, E. 2003 Artificial neural network approach for predicting transient water
levels in multilayered groundwater system under variable state, pumping, and climate conditions. Journal of Hydrologic
Engineering 8, 348–360.

Coulibaly, P., Anctil, F., Aravena, R. & Bobée, B. 2001 Artificial neural network modeling of water table depth fluctuations.
Water Resources Research 37 (4), 885–896.

Daliakopoulos, I. N., Coulibaly, P. & Tsanis, I. K. 2005 Groundwater level forecasting using artificial neural networks. Journal
of Hydrology 309, 229–240.

Fernández, C., Vega, J. A., Fonturbel, T. & Jiménez, E. 2008 Streamflow drought time series forecasting: a case study in a small
watershed in North West Spain. Stochastic Environmental Research and Risk Assessment 23 (8), 1063–1070.

Ghanbarpour, R. M., Amiri, M., Zarei, M. & Darvari, Z. 2012 Comparison of stream flow predicted in a forest watershed using
different modelling procedures: ARMA, ANN, SWRRB, and IHACRES models. International Journal of River Basin
Management 10, 281–292.

Govindasamy, R. 1991 Univariate Box-Jenkins forecasts of water discharge in Missouri river. International Journal of Water
Resources Developemnt 7, 168–177.

Hipel, K. W. & Mcleod, A. I. 1994 Time Series Modeling of Water Resources and Environmental Systems. Developments in
Water Science Series, Vol. 45. Elsevier, New York, USA.

Khaki, M., Yusoff, I. & Islami, N. 2015 Simulation of groundwater level through artificial intelligence system. Environmental
Earth Sciences 73, 8357–8367.

Kim, S. J., Hyun, Y. & Lee, K. K. 2005 Time series modeling for evaluation of groundwater discharge rates into an urban subway
system. Geosciences Journal 9, 15–22.

Kisi, O. 2010 Wavelet regression model for short-term streamflow forecasting. Journal of Hydrology 389 (3–4), 344–353.
Ljung, G. M. & Box, G. E. P. 1978 On a measure of lack of fit in time series models. Biometrika 65 (2), 297–303.
Lu, W. X., Zhao, Y., Chu, H. B. & Yang, L. L. 2013 The analysis of groundwater levels influenced by dual factors in western Jilin

Province by using time series analysis method. Applied Water Science 4, 251–260.
Maheswaran, R. & Khosa, R. 2013 Long term forecasting of groundwater levels with evidence of non-stationary and nonlinear

characteristics. Computers and Geosciences 52, 422–436.
Maiti, S. & Tiwari, R. K. 2014 A comparative study of artificial neural networks, Bayesian neural networks and adaptive neuro-

fuzzy inference system in groundwater level prediction. Environmental Earth Sciences 71, 3147–3160.
Martins, O. Y., Ahaneku, I. E. & Mohanned, S. A. 2011 Parametric linear stochastic modelling of Benue river flow process.

Open Journal of Marine Science 1 (3), 73–81.
Modarres, R. 2007 Streamflow drought time series forecasting. Stochastic Environmental Research and Risk Assessment 21 (3),

223–233.
Moeeni, H., Bonakdari, H. & Fatemi, S. E. 2017 Stochastic model stationarization by eliminating the periodic term and its effect

on time series prediction. Journal of Hydrology 547, 348–364.
Mohanasundaram, S., Narasimhan, B. & Suresh Kumar, G. 2017 Transfer function noise modelling of groundwater level

fluctuation using threshold rainfall-based binary-weighted parameter estimation approach. Hydrological Sciences Journal
62, 36–49.

Mohanty, S., Jha, M. K., Kumar, A. & Sudheer, K. P. 2010 Artificial neural network modeling for groundwater level forecasting
in a river island of eastern India. Water Resources Management 24, 1845–1865.

Mondal, M. S. & Wasimi, S. A. 2006 Generating and forecasting monthly flows of the Ganges river with PAR model. Journal of
Hydrology 323 (1–4), 41–56.

Montanari, A., Rosso, R. & Taqqu, M. S. 2000 A seasonal fractional ARIMA Model applied to the Nile River monthly flows at
Aswan. Water Resources Research 36 (5), 1249–1259.

Nourani, V., Alami, M. T. & Vousoughi, F. D. 2015 Wavelet-entropy data pre-processing approach for ANN-based groundwater
level modeling. Journal of Hydrology 524, 255–269.

Paul, P. K. 2008 Ground Water Table Forecasting in A Shallow Aquifer: SARIMA Modeling. PhD thesis, University of Rajshahi,
Bangladesh.

Pektas, A. O. & Cigizoglu, H. K. 2013 ANN hybrid model versus ARIMA and ARIMAX models of runoff coefficient. Journal of
Hydrology 500, 21–36.

Peng, M. H. & Liu, J. K. 2000Groundwater Level Forecasting with Time Series Analysis. Geospatial World. Available at: https://
www.geospatialworld.net/article/groundwater-level-forecasting-with-time-series-analysis/.

Sahoo, S. & Jha, M. K. 2015 On the statistical forecasting of groundwater levels in unconfined aquifer systems. Environmental
Earth Sciences 73, 3119–3136.

Sannasiraj, S. A., Zhang, H., Babovic, V. & Chan, E. S. 2004 Enhancing tidal prediction accuracy in a deterministic model using
chaos theory. Advances in Water Resources 27 (7), 761–772.

Schwarz, G. 1978 Estimating the dimension of a model. The Annals of Statistics 6, 461–464.
Seeboonruang, U. 2014 An empirical decomposition of deep groundwater time series and possible link to climate variability.

Global NEST Journal 16, 87–103.
Seeboonruang, U. 2015 An application of time-lag regression technique for assessment of groundwater fluctuations in a

regulated river basin: a case study in Northeastern Thailand. Environmental Earth Sciences 73, 6511–6523.
Seo, Y., Kim, S., Kisi, O. & Singh, V. P. 2015 Daily water level forecasting using wavelet decomposition and artificial

intelligence techniques. Journal of Hydrology 520, 224–243.
iwaponline.com/h2open/article-pdf/2/1/25/534605/h2oj0020025.pdf

http://dx.doi.org/10.1061/(ASCE)1084-0699(2003)8:6(348)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2003)8:6(348)
http://dx.doi.org/10.1029/2000WR900368
http://dx.doi.org/10.1016/j.jhydrol.2004.12.001
http://dx.doi.org/10.1007/s00477-008-0277-8
http://dx.doi.org/10.1007/s00477-008-0277-8
http://dx.doi.org/10.1080/15715124.2012.699893
http://dx.doi.org/10.1080/15715124.2012.699893
http://dx.doi.org/10.1080/07900629108722509
http://dx.doi.org/10.1007/s12665-014-3997-8
http://dx.doi.org/10.1007/BF02910550
http://dx.doi.org/10.1007/BF02910550
http://dx.doi.org/10.1016/j.jhydrol.2010.06.013
http://dx.doi.org/10.1093/biomet/65.2.297
http://dx.doi.org/10.1007/s13201-013-0111-4
http://dx.doi.org/10.1007/s13201-013-0111-4
http://dx.doi.org/10.1016/j.cageo.2012.09.030
http://dx.doi.org/10.1016/j.cageo.2012.09.030
http://dx.doi.org/10.1007/s12665-013-2702-7
http://dx.doi.org/10.1007/s12665-013-2702-7
http://dx.doi.org/10.4236/ojms.2011.13008
http://dx.doi.org/10.1007/s00477-006-0058-1
http://dx.doi.org/10.1016/j.jhydrol.2017.02.012
http://dx.doi.org/10.1016/j.jhydrol.2017.02.012
http://dx.doi.org/10.1007/s11269-009-9527-x
http://dx.doi.org/10.1007/s11269-009-9527-x
http://dx.doi.org/10.1016/j.jhydrol.2005.08.015
http://dx.doi.org/10.1029/2000WR900012
http://dx.doi.org/10.1029/2000WR900012
http://dx.doi.org/10.1016/j.jhydrol.2015.02.048
http://dx.doi.org/10.1016/j.jhydrol.2015.02.048
http://dx.doi.org/10.1016/j.jhydrol.2013.07.020
https://www.geospatialworld.net/article/groundwater-level-forecasting-with-time-series-analysis/
https://www.geospatialworld.net/article/groundwater-level-forecasting-with-time-series-analysis/
https://www.geospatialworld.net/article/groundwater-level-forecasting-with-time-series-analysis/
http://dx.doi.org/10.1007/s12665-014-3608-8
http://dx.doi.org/10.1016/j.advwatres.2004.03.006
http://dx.doi.org/10.1016/j.advwatres.2004.03.006
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1007/s12665-014-3872-7
http://dx.doi.org/10.1007/s12665-014-3872-7
http://dx.doi.org/10.1016/j.jhydrol.2014.11.050
http://dx.doi.org/10.1016/j.jhydrol.2014.11.050


H2Open Journal Vol 2 No 1
44 doi: 10.2166/h2oj.2019.022

Downloaded from https://
by guest
on 25 August 2020
Shirmohammadi, B., Vafakhah, M., Moosavi, V. & Moghaddamnia, A. 2013 Application of several data-driven techniques for
predicting groundwater level. Water Resources Management 27, 419–432.

Sreekanth, P. D., Sreedevi, P. D., Ahmed, S. & Geethanjali, N. 2011 Comparison of FFNN and ANFIS models for estimating
groundwater level. Environmental Earth Sciences 62, 1301–1310.

Tankersley, C. D., Graham, W. D. & Hatfield, K. 1993 Comparison of univariate and transfer function models of groundwater
fluctuations. Water Resources Research 29 (10), 3517–3533.

Wong, H., Ip, W. C., Zhang, R. Q. & Xia, J. 2007 Non-parametric time series models for hydrological forecasting. Journal of
Hydrology 332 (3–4), 337–347.

WRO (Water Resources Organization) 2007 Micro Level Study, Chennai Basin, Vol. I. Institute of Water Studies, Taramani,
Chennai, India

Yang, Z. P., Lu, W. X., Long, Y. & Li, P. 2009 Application and comparison of two prediction models for groundwater levels: a
case study in Western Jilin Province, China. Journal of Arid Environments 73, 487–492.

Young, P. C. 1999 Nonstationary time series analysis and forecasting. Progress in Environmental Science 1 (1), 3–48.
Yu, H. W. & Chu, H. J. 2012 Recharge signal identification based on groundwater level observations. Environmental Monitoring

and Assessment 184, 5971–5982.
iwaponline.com/h2open/article-pdf/2/1/25/534605/h2oj0020025.pdf

http://dx.doi.org/10.1007/s11269-012-0194-y
http://dx.doi.org/10.1007/s11269-012-0194-y
http://dx.doi.org/10.1007/s12665-010-0617-0
http://dx.doi.org/10.1007/s12665-010-0617-0
http://dx.doi.org/10.1029/93WR01527
http://dx.doi.org/10.1029/93WR01527
http://dx.doi.org/10.1016/j.jhydrol.2006.07.013
http://dx.doi.org/10.1016/j.jaridenv.2008.11.008
http://dx.doi.org/10.1016/j.jaridenv.2008.11.008
http://dx.doi.org/10.1007/s10661-011-2394-y

	A novel deseasonalized time series model with an improved seasonal estimate for groundwater level predictions
	INTRODUCTION
	METHODOLOGY
	Basic steps in time series modeling
	Deseasonalized ARMA models
	Traditional deseasonalization method
	Proposed deseasonalization method

	SARIMA models
	Model information criterion indices
	Residual test
	Model performance indices

	Application site: Adyar basin
	Data used

	RESULTS AND DISCUSSION
	Autocorrelation and partial autocorrelation analysis
	Deseasonalized time series using traditional and proposed methods
	Model identification and parameter estimation
	SARIMA models
	TDs-ARMA model
	MDs-ARMA model

	Residual analysis for the developed models
	Groundwater level prediction and validation by developed models

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES


