Groundwater Asia

Mapping Groundwater Resilience to Climate Change and Human Development in Asian Cities
Mapping Groundwater Resilience to Climate Change and Human Development in Asian Cities
Climate and land-use change impacts on spatiotemporal variations in groundwater recharge: A case study of the Bangkok Area, Thailand

Groundwater contributes to the socioeconomic development of the Thai capital Bangkok and its vicinity. However, groundwater resources are under immense pressure due to population growth, rapid urbanisation, overexploitation, and climate change. Therefore, evaluating the combined impact of climate change and land-use change on groundwater recharge can be useful for developing sound groundwater management systems. In this research, the future climate is projected using three Regional Climate Models (RCMs), namely ACCESS-CSIRO-CCAM, CNRM-CM5-CSIRO-CCAM, and MPI-ESM-LR-CSIRO-CCAM for three future periods: near future (2010–2039), mid future (2040–2069), and far future (2070–2099) under two Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 as suggested in the IPCC’s Fifth Assessment Report. All RCMs project the temperature to rise incessantly, although future precipitation is predicted to fluctuate (increase and decrease) among the various RCMs and RCP scenarios. A Dyna-CLUE model is employed to analyse the future land-use change scenarios (low, medium, and high urbanisation), with the aim of expanding the built-up area and creating land-use maps covering the period to 2099. A hydrological model, WetSpass, is used to estimate groundwater recharge under future climate and land-use change. The findings reveal that groundwater recharge is expected to decrease in high and medium urbanisation areas, ranging from 5.84 to 20.91 mm/yr for the RCP 4.5 scenario and 4.07 to 18.72 mm/yr for RCP 8.5. In contrast, for the low urbanisation scenario, the model projects an increase in groundwater recharge ranging from 7.9 to 16.66 mm/yr for the RCP 4.5 scenario and 5.54 to 20.04 mm/yr for RCP 8.5.

SHARE THIS POST

Share on facebook
Share on twitter
Share on linkedin
Share on reddit
Share on print
Share on email

Recent Publications

January 2020
Groundwater resources of Kathmandu Valley in Nepal are under immense pressure from multiple stresses, including climate change. Due to over-extraction, groundwater resources are depleting, leading to social, environmental, and economic problems. Climate change might add additional pressure by altering groundwater recharge rates and availability [...]
March 2020
Ho Chi Minh City (HCMC), Vietnam has undergone tremendous transformation in land-use practices in the past few decades. The groundwater-related issues have also been a major concern in the fast-growing southern city of Vietnam. Quantitative prediction of the impact on groundwater recharge due to [...]
September 2017
Impacts of climate change on water resources, especially groundwater, can no longer be hidden. These impacts are further exacerbated under the integrated influence of climate variability, climate change and anthropogenic activities. The degree of impact varies according to geographical location and other factors leading [...]